
Optimization of Combinatorial Software
Testing: A Systematic Literature Review

Puxka Acosta-Domínguez, Angel J. Sánchez-García,

Candy Obdulia Sosa-Jiménez

Universidad Veracruzana,
Facultad de Estadística e Informática,

Mexico

puxka.acodom@gmail.com, {angesanchez, cansosa}@uv.mx

Abstract. One of the reasons why Industry 4.0 is a reality is the development of
quality Software that allows the interconnectivity and management of the devices
we use. To ensure quality in the software, it is necessary that it be released with
the least number of failures. For this, it is necessary that the software tests cover
all possible paths extensively and it is for this reason that approaches such as
combinatorial tests arise. This type of test seeks to generate test cases for the
detection of failures. This Systematic Literature Review (SLR) compiles the
optimization techniques, approaches, areas of opportunity and application of
combinatorial tests. In this SLR, 82 primary studies were identified, based on the
Kitchenham and Charters guide, where it is observed that the most frequent
application of this type of test is the web, although most of the studies only
propose improvements without any specific domain. Also, the most widely used
approaches are IPOG and its variants. Finally, the most mentioned opportunity
area was the improvement of results and algorithms.

Palabras clave: Combinatorial testing, optimization, systematic literature
review, quality software.

1 Introduction

In recent years, the need for high-quality software has increased. This is due to the fact
that all current devices and those generated in Industry 4.0 require Software that is less
prone to failures, and that quality does not impact human and economic resources. This
quality is ensured when the Software is thoroughly tested before it is released.

The activities carried out in the development of a software project are divided into
processes, such as requirements, design, construction, testing, configuration
management, among others [1], being the testing stage the interest of this document.
Since depending on the system and the defect sought, it is the type of testing technique
that will be used [2]. With the interest in combinatorial tests, this paper presents a
Systematic Literature Review (SLR) focused on the categorization of current research.

The aim is to find techniques to design combinatorial tests that can be used for future
research areas. This work is aimed at researchers to find niches of opportunity in this
area. Other beneficiaries will be students and developers, especially those in the testing

43

ISSN 1870-4069

Research in Computing Science 150(11), 2021pp. 43–52; rec. 2021-08-01; acc. 2021-09-15

area. The first will get an insight into a topic that has been little covered, and developers
in the industry will get a starting or improvement point for their current testing. The
work will use a systematic method to extract and analyze the works on the topic.

The aim of this Systematic Literature Review is to present the state of the use of
Artificial Intelligence in the design of combinatorial tests to ensure the quality of the
software. This is to discuss the most promising approaches and, in the future, generate
lines of research in the area.

This paper is organized as follows: Section II presents the background and related
work of reviews on the subject. Section III exposes the method followed to carry out
the SLR. Section IV describes the final results. Finally, Section V draws conclusions.

2 Background and Related Work

Combinatorial tests are a method that can detect defects that other types of tests cannot
(for example, random tests or equivalence partition tests), since the defect can be found
in the combination of parameters. In addition, they reduce the number of tests, therefore
reducing costs [3]. These tests are of the black box type, therefore, to carry them out,
test cases are created that receive inputs to a functionality and as a result provide an
output. Combinatorial tests can be from two to T variables. Combinatorial tests have
also been called as combinatorial tests in pairs, which are those of two variables, and
tests of combinatorial interaction.

All combinations can be represented by a covering array (CA). The CA is a
mathematical object in which all combinations of a parameter are covered at least once
[4]. These can be created with the help of tools, which change depending on the
algorithm on which they are based. There are different types of algorithms, among those
based on Artificial Intelligence (AI) are optimization algorithms. AI has sought to
reduce the human error that is always present in any system, therefore, it is not

Table 1. Research questions.

Quesition Motivation
Q1.- What are the applications of
combinatorial test?

To know where the combinatorial tests have
currently been applied.

Q2.- Which optimization techniques
have been proposed to generate
combinatorial test cases?

To identify proposals for the Artificial Intelligence
optimization area in the generation of combinatorial
test cases.

Q3.- What areas of opportunity are there
for the research community?

To present proposals for areas of research
opportunity on the subject of combinatorial test
design.

Table 2. Identified keywords and synonyms.

Concept Synonyms
Combinatorial
testing

Combinatorial test, combinatorial interaction testing, pairwise testing

Automation Automated, automatized

Optimization Optimize, optimized

Algorithm Approach, strategy, method

44

Puxka Acosta-Domínguez, Angel J. Sánchez-García, Candy Obdulia Sosa-Jiménez

Research in Computing Science 150(11), 2021 ISSN 1870-4069

surprising that this discipline collaborates with Software Engineering (SE). According
to a study [5], the use of AI algorithms in the SE testing phase has been investigated
since 1970 and mostly in black box testing, of which combinatorial testing is a part.

The oldest review on the subject found dates from 2014 [6] and it took the topic of
combinatorial testing as part of Software Product Line testing strategies. Other review
[7], collected the algorithms and tools from 1991 to 2014, but is not strict in following
a method.

The only Systematic Mapping found [8] has as main focus combinatorial tests with
application in SPL. A Systematic Literature Review from 2017 [9] talks about
combinatorial tests in general, mentioning tools and limitations, but it is the one that
has its method with less detail of all the reviews.

The SLR found [10] describes the combinatorial tests that have handling of
restrictions, which are also mentioned in the present work, but not limited to these.

3 Research Method

To carry out this review, the method proposed in [11] by Kitchenham and Charters was
performed, which is a guide used in Software Engineering to carry out Systematic
Literature Reviews (SLR). This section describes the steps defined in [11].

3.1 Research Questions

Table 1 shows the research questions with their motivation, to guide this process.

3.2 Search Strategy and Data Sources

The automated search strategy was used to collect the information. For this, keywords
were identified, which were taken from the research questions and similar terms, as
shown in Table 2.

Table 3. Inclusion Criteria.

IC Description

1 Studies published between the years 2015 to 2021

2 Studies written in English

3
The title and / or abstract give indications that at least one research question will be
answered

4 The full text answers at least one research question

Table 4. Exclusion Criteria.

EC Description

1 It is a summary, workshop, opinion piece, presentation, book or technical report.

2 Do not have access to the full text

3 It is a duplicate research

4 The full text answers at least one research question

45

Optimization of Combinatorial Software Testing: A Systematic Literature Review

Research in Computing Science 150(11), 2021ISSN 1870-4069

With these terms, 5 search strings were created and they were validated with the
precision and recall criteria, which have been used in Systematic Reviews of Software
Engineering [12]. The results of these metrics for each of the 5 search strings can be
found in Appendix A1.

The selection of sources was based on [11] and [12], two guides for conducting
systematic reviews of Software Engineering. Following these, the following
repositories were selected: SpringerLink, IEEE Xplore, ScienceDirect and ACM
Digital Library.

3.3 Selection Criteria

For the selection of primary studies, inclusion and exclusion criteria were established,
which can be seen in Table 3 and 4.

1 Appendix A. Search String metrics: https://drive.google.com/file/d/1B_7ZuB0EFYNzbYm

tQwAZt1SWhGk0ZA9R/view?usp=sharing

Fig. 1. Primary studies by year of publication.

Fig. 2. Number of primary studies per application of combinatorial tests.

46

Puxka Acosta-Domínguez, Angel J. Sánchez-García, Candy Obdulia Sosa-Jiménez

Research in Computing Science 150(11), 2021 ISSN 1870-4069

3.4 Selection Procedure

The selection process is made up of the following stages:

– Stage 1. Primary studies are filtered according to IC1 and IC2 and studies
are removed according to EC1.

– Stage 2. The primary studies are filtered according to the IC3 and the
primary studies are removed according to the IC2 and EC3.

– Stage 3. Primary studies are filtered according to IC4.

First, the automated search was executed in the four repositories, being 1613 the
works found, as can be seen in Table 5. After that, the inclusion and exclusion criteria
were applied stage by stage, reducing the studies in SpringerLink by 95.75%, in IEEE
Xplore by 90.28%, in ScienceDirect by 96.67% and in ACM Digital Library
by 96.08%.

3.5 Quality Assessment

The criteria to assess the quality of the primary studies were obtained from a systematic
review used and accepted in the Software Engineering community [13]. The criteria are
in the form of a questionary. The selected criteria are shown in Table 6. Each question
is answered with “yes” or “no” (rated as 1 or 0 respectively). So that each study can

Table 5. Application of inclusion and exclusion criteria by stage.

Database First Results Stage 1 Stage 2 Stage 3

ACM Digital Library 400 228 30 17

IEEE Xplore 360 177 44 35

ScienceDirect 420 183 15 14

SpringerLink 433 168 22 16

Total 1613 756 111 82

Table 6. Quality assessment criteria.

NC Criteria

1 Is the study research-based (not just a report based on “lessons learned” or opinion)?

2 Is there an explanation of the objectives of the research?

3 Is there a description of the context in which the research was carried out?

4 Does the research design speak to the research objectives?

5 Did the sample of data used have a description?

6 Was the information collected in a way that spoke to the research problem?

7 Was the information analysis rigorous?

8 Is there an explanation for the findings?

9 Is the study of value for research or practice?

47

Optimization of Combinatorial Software Testing: A Systematic Literature Review

Research in Computing Science 150(11), 2021ISSN 1870-4069

have a final score from 0 (which means very poor) to 9 (which means very good). The
quality score of the selected works can be seen in a freely accessible spreadsheet [14].

4 Results

In Fig. 1 the primary studies that passed the selection process are shown. It was found
that three digital libraries have been a decrease in the combinatorial test research. Each
of the research questions is answered in summary below.

4.1 Q1: What are the Applications of Combinatorial Test?

As can be seen in Fig. 2, seven main applications of combinatorial tests were identified
in the last 6 years. All studies whose approach to performing combinatorial tests did
not have a specific application domain were pooled. In the “Other” category, the
domains that were only present in a primary study were grouped.

4.2 Q2: Which Optimization Techniques Have Been Proposed to Generate
Combinatorial Test Cases?

From all the studies, 54 papers answered this question, which represent 66% of the total
number of studies selected. These mention around 50 optimization algorithms, all with
a varied level of detail. Even with this variation, we organize them into the original
algorithms, those that were based on an existing one to improve it as it is shown in
Table 7 and those that use another algorithm as part of their own process, as can be seen

Fig. 3. Algorithms most used in combinatorial testing.

48

Puxka Acosta-Domínguez, Angel J. Sánchez-García, Candy Obdulia Sosa-Jiménez

Research in Computing Science 150(11), 2021 ISSN 1870-4069

in Table 8. The detail of each algorithm per paper and its reference can be seen in
Appendix B2.

As can be seen in Fig. 3, the most used algorithm was In-Parameter-Order-General
(IPOG) since ACTS, the most used tool, uses this algorithm and variations. The most
used algorithm from the original algorithms is the Genetic Algorithm (GA), the second
is Cuckoo search and the others were only used once.

Most of the original algorithms are bioinspired. Cuckoo search, Bat algorithm (BAT)
and Whale Optimization Algorithm (WOA) are algorithms inspired by animal
behaviors, Simulated Annealing in the process of heat treatment of metal, Teaching
Learning Based Optimization (TLBO) in school teaching and Particle Swarm
Optimization (PSO) in social behavior.

2 Appendix B. Algorithms by paper: https://drive.google.com/file/d/19qJ8PsWntCOToq73-

SIryjuMq-RF6PL3/view?usp=sharing

Table 7. Algorithms based in other optimization algorithms.

Base Algorithm Proposed Algorithm

ABC PhABC

AETG System Prow

BSA EBSA

Cuckoo Search LCS

D-construction RIPOG

FPA AFPA

Genetic GS, HOA, PGAS

Greedy approach
Budgeted greedy, DICOT, FIPO, HILP, HINLP, IncLing, IPOG,
IPOG-F, IPOG-F2, OTAT, PROW, PTC, TTR

IPO IPOG, IPOG-D, IPOG-F, IPOG-F2, UIPO

IPOG RIPOG

IPOG-C IPOG-CNeg

IPOG-D RIPOG

OTAT EBSA, FS, FWA, OTAT with constraint, PROW

PSO MOPSO, SITG

Simulated annealing AFSO

Tabu search CATS

Table 8. Algorithms used with another optimization algorithm.

Base Algorithm Proposed Algorithm

Ant Colony UIPO

ExtendCA AFSO

FPA FIPO, PCFHH

Greedy Search PCFHH

49

Optimization of Combinatorial Software Testing: A Systematic Literature Review

Research in Computing Science 150(11), 2021ISSN 1870-4069

4.3 Q3.- What Areas of Opportunity are There for the Research Community?

The 9 areas of opportunity mentioned in the studies are shown in Fig. 4. One of the
most mentioned was improving the performance of algorithms, although this type of
test is known to give optimal results in its performance. It is wanted to decrease the size
of the test set [15] or improve search efficiency in a large set of test cases [16]. The
possibility exists of achieving this by parallelizing the algorithm [17]. Later, the
majority mentioned the increase in coverage of variables. This in combinatorial tests in
pairs [18], 3-variables [19] and one of 6-variables [20].

Another interest is adding constraint handling. Many of the tools of the last years do
not implement any method for this [21]. Therefore, it is the intention to apply them in
well-known algorithms [22] or in algorithms that have only just been introduced to
combinatorial tests [23]. It also seeks to complement or combine an algorithm with
some other to improve the results [24], but they want to incorporate more to refine
the algorithm.

Also, testing the algorithm in big problems is mentioned. The goal would be to scale
to very large problems and find smaller sets of tests than in your current results [25].
The sixth most mentioned is to integrate machine-learning to the algorithm. This could
help test generation by learning from previously generated test sets [22].

5 Conclusions and Future Work

This work took an approach that few works have taken and, unlike those that have, the
method proposed in [11] was detailed and followed. With this, the reproducibility of
the results is possible. In addition, the results of the extraction and quality evaluation
are online and available to all public. As a result, the algorithms that have been applied

Fig. 4. Percentage of opportunity areas mentioned in the studies.

50

Puxka Acosta-Domínguez, Angel J. Sánchez-García, Candy Obdulia Sosa-Jiménez

Research in Computing Science 150(11), 2021 ISSN 1870-4069

to generate the combinations of test cases have been compiled. These algorithms are
the basis for combinatorial tests, which are applied in a wide variety of fields such as
web, security, mobile devices and others, which shows that it is an active area, current,
but above all, a useful area to ensure the quality of software of any kind.

In this study, it was observed that the most widely used approaches are IPOG and its
variants, bioinspired approaches and classic approaches such as Simulated Annealing
and Greedy search. Therefore, it can be seen that although there is a growing interest
in bioinspired algorithms, some other metaheuristics have contributed much knowledge
in this area of Software Engineering.

Finally, the most mentioned opportunity area was the improvement of results and
algorithms. This is important since based on the proposed approaches, you can explore
and experiment with others to compare the results. Nevertheless, the greater coverage
and handling of restrictions are also highlighted. Therefore, it is seen that there is still
a lot of research to be done in this field and with the help of new optimization strategies,
it is sought to ensure the quality of the software, which is fundamental in Industry 4.0.

As future work it is proposed to explore the comparison of bioinspired algorithms
with other metaheuristics (such as simulated annealing). Also explore local search
methods to get better coverage in test cases.

References

1. Bourque, P., Dupuis, R., Abran, A., Moore, J. W., Tripp, L.: Guide to the software
engineering body of knowledge. IEEE Software, IEEE Computer Society, vol. 16, no. 6, pp.
35–44 (1999) doi: 10.1109/52.805471

2. Wu, H., Nie, C., Petke, J., Jia, Y., Harman, M.: An empirical comparison of combinatorial
testing, random testing, and adaptive random testing. IEEE Trans. Softw. Eng., vol. 46, no.
3, pp. 302–320 (2020) doi: 10.1109/TSE.2018.2852744

3. Kuhn, R., Kacker, R., Lei, Y., Hunter, J.: Combinatorial software testing. Computer (Long.
Beach. Calif), vol. 42, no. 8, pp. 94–96 (2009) doi: 10.1109/ MC.2009.253

4. Sloane, N. J. A.: Covering arrays and intersecting codes. J. Comb. Des., vol. 1, no. 1, pp.
51–63 (1993) doi: 10.1002/jcd.3180010106

5. Lima, R., Da Cruz, A. M. R., Ribeiro, J.: Artificial intelligence applied to software testing:
A literature review. In: Iberian conference on information systems and technologies. CISTI,
vol. 2020, no. June (2020). doi: 10.23919/CISTI49556. 2020.9141124

6. Machado, I. D. C., McGregor, J. D., Cavalcanti, Y. C., De Almeida, E. S.: On strategies for
testing software product lines: A systematic literature review. Inf. Softw. Technol., vol. 56,
no. 10, pp. 1183–1199 (2014) doi: 10.1016/j.infsof. 2014.04.002

7. Khalsa, S. K., Labiche, Y.: An orchestrated survey of available algorithms and tools for
combinatorial testing. In: Proceedings International Symposium on Software Reliability
Engineering, ISSRE, pp. 323–334 (2014) doi: 10.1109/ISS RE.2014.15

8. Lopez-Herrejon, R. E., Fischer, S., Ramler, R., Egyed, A.: A first systematic mapping study
on combinatorial interaction testing for software product lines (2015) doi:
10.1109/ICSTW.2015.7107435

9. Abdullah, A., Hassan, R., Shah Z. A.: A Systematic literature review of combinatorial
testing. Int. J. Advance Soft Compu. Appl, vol. 9, no. 2 (2017)

10. Ahmed, B. S., Zamli, K. Z., Afzal, W., Bures, M.: Constrained interaction testing: A
systematic literature study. IEEE Access, vol. 5, pp. 25706–25730 (2017) doi:
10.1109/ACCESS.2017.2771562

51

Optimization of Combinatorial Software Testing: A Systematic Literature Review

Research in Computing Science 150(11), 2021ISSN 1870-4069

11. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in
software engineering. Department of Computer Science University of Durham, Durham,
UK, Tech Rep (2007)

12. Dieste, O., Grimán, A., Juristo, N.: Developing search strategies for detecting relevant
experiments. Empirical Software Engineering, vol. 14, no. 5, pp. 513–539 (2009) doi:
10.1007/s10664-008-9091-7

13. Dyba, T., Dingsøyr, T.: Empirical studies of agile software development: A systematic
review. Information and software technology, vol. 50, no. 9-10, pp. 833–859 (2008) doi:
10.1016/j.infsof.2008.01.006

14. Acosta, P.: Estudios primarios. Estrategias para diseñar pruebas combinatorias (2020)
15. Balera, J. M., de Santiago, V. A.: A controlled experiment for combinatorial testing. In:

SAST: Proceedings of the 1st Brazilian Symposium on Systematic and Automated Software
Testing, pp. 1–10 (2016) doi: 10.1145/2993288.2993289

16. Wolde, B. G., Boltana A. S.: Combinatorial testing approach for cloud mobility service. In:
AICCC 2019: Proceedings of the 2019 2nd Artificial Intelligence and Cloud Computing
Conference, pp. 6–13 (2019) doi: 10.1145/3375959.3375967

17. Al-Hajjaji, M., Krieter, S., Thüm, T., Lochau, M., Saake, G.: IncLing: Efficient product-line
testing using incremental pairwise sampling. ACM SIGPLAN Not., vol. 52, no. 3, pp. 144–
155 (2016) doi: 10.1145/2993236.2993253

18. Alazzawi, A. K., Rais, H. M., Basri, S., Alsariera, Y. A.: PhABC: A hybrid artificial bee
colony strategy for pairwise test suite generation with constraints support. In: IEEE Student
Conference on Research and Development, SCOReD´19. pp. 106–111 (2019) doi:
10.1109/SCORED.2019.8896324

19. Kampel, L., Simos, D. E.: Set-based algorithms for combinatorial test set generation. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 9976, pp. 231–240 (2016)

20. Ahmed, B. S.: Test case minimization approach using fault detection and combinatorial
optimization techniques for configuration-aware structural testing. Engineering Science and
Technology, an International Journal, vol. 19, no. 2, pp. 737–753 (2016) doi:
10.1016/j.jestch.2015.11.006

21. Petke, J.: Constraints: The future of combinatorial interaction testing. In: Proceedings - 8th
International Workshop on Search-Based Software Testing, SBST´15, pp. 17–18 (2015) doi:
10.1109/SBST.2015.11

22. Li, N., Lei, Y., Khan, H. R., Liu, J., Guo, Y.: Applying combinatorial test data generation to
big data applications. In: ASE 2016. Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, pp. 637–647 (2016) doi:
10.1145/2970276.2970325

23. Ahmed, B. S.: Test case minimization approach using fault detection and combinatorial
optimization techniques for configuration-aware structural testing. Engineering Science and
Technology, an International Journal, vol. 19, no. 2, pp. 737–753 (2016) doi:
10.1016/j.jestch.2015.11.006

24. Ericsson, S., Enoiu, E.: Combinatorial modeling and test case generation for industrial
control software using ACTS. In: Proceedings IEEE 18th International Conference on
Software Quality, Reliability, and Security, QRS´18. pp. 414–425 (2018) doi:
10.1109/QRS.2018.00055

25. Qi, R. Z., Wang, Z. J., Li, S. Y.: A parallel genetic algorithm based on spark for pairwise
test suite generation. J. Comput. Sci. Technol., vol. 31, no. 2, pp. 417–427 (2016) doi:
10.1007/s11390-016-1635-5

52

Puxka Acosta-Domínguez, Angel J. Sánchez-García, Candy Obdulia Sosa-Jiménez

Research in Computing Science 150(11), 2021 ISSN 1870-4069

